The endosperm-specific ZHOUPI gene of Arabidopsis thaliana regulates endosperm breakdown and embryonic epidermal development.
نویسندگان
چکیده
During Arabidopsis seed development, the growing embryo invades and consumes the surrounding endosperm tissue. The signalling pathways that coordinate the separation of the embryo from the endosperm and the concomitant breakdown of the endosperm are poorly understood. We have identified a novel bHLH transcription factor, ZHOUPI (ZOU), which mediates these processes. ZOU is expressed exclusively in the endosperm of developing seeds. It is activated in the central cell immediately after fertilization and is initially expressed uniformly in endosperm, subsequently resolving to the embryo surrounding region (ESR). However, zou mutant embryos have defects in cuticle formation and in epidermal cell adhesion, suggesting that ZOU functions non-autonomously to regulate embryonic development. In addition, the endosperm of zou mutant seeds fails to separate from the embryo, restricting embryo expansion and resulting in the production of shrivelled collapsed seeds. zou seeds retain more endosperm than do wild-type seeds at maturity, suggesting that ZOU also controls endosperm breakdown. We identify several target genes whose expression in the ESR is regulated by ZOU. These include ABNORMAL LEAF SHAPE1, which encodes a subtilisin-like protease previously shown to have a similar role to ZOU in regulating endosperm adhesion and embryonic epidermal development. However, expression of several other ESR-specific genes is independent of ZOU. Therefore, ZOU is not a general regulator of endosperm patterning, but rather controls specific signalling pathways that coordinate embryo invasion and breakdown of surrounding endosperm tissues.
منابع مشابه
ICU Rounds: "What We've Got Here Is Failure to Communicate".
ZHOUPI, a unique and highly conserved bHLH transcription factor, controls both endosperm breakdown and embryonic surface formation during Arabidopsis seed development. We have demonstrated that these two processes are distinct, and that ZHOUPI regulates embryonic surface formation via a signaling pathway mediated by the subtilisin-like serine protease ABNORMAL LEAF SHAPE1, and the receptor-kina...
متن کاملZHOUPI controls embryonic cuticle formation via a signalling pathway involving the subtilisin protease ABNORMAL LEAF-SHAPE1 and the receptor kinases GASSHO1 and GASSHO2.
Seed production in angiosperms requires tight coordination of the development of the embryo and the endosperm. The endosperm-specific transcription factor ZHOUPI has previously been shown to play a key role in this process, by regulating both endosperm breakdown and the formation of the embryonic cuticle. To what extent these processes are functionally linked is, however, unclear. In order to a...
متن کاملMechanical stress mediated by both endosperm softening and embryo growth underlies endosperm elimination in Arabidopsis seeds.
Seed development in angiosperms demands the tightly coordinated development of three genetically distinct structures. The embryo is surrounded by the endosperm, which is in turn enclosed within the maternally derived seed coat. In Arabidopsis, final seed size is determined by early expansion of the coenocytic endosperm, which then cellularises and subsequently undergoes developmental programmed...
متن کاملEndosperm breakdown in Arabidopsis requires heterodimers of the basic helix-loop-helix proteins ZHOUPI and INDUCER OF CBP EXPRESSION 1.
In Arabidopsis seeds, embryo growth is coordinated with endosperm breakdown. Mutants in the endosperm-specific gene ZHOUPI (ZOU), which encodes a unique basic helix-loop-helix (bHLH) transcription factor, have an abnormal endosperm that persists throughout seed development, significantly impeding embryo growth. Here we show that loss of function of the bHLH-encoding gene INDUCER OF CBP EXPRESSI...
متن کاملIdentification of ZHOUPI Orthologs in Rice Involved in Endosperm Development and Cuticle Formation
The endosperm occupies most of the available space within mature rice seeds, contains abundant nutrients, and directly influences both the quality and quantity of rice production. Initial reports noted that AtZHOUPI (AtZOU) coordinates endosperm breakdown and the concomitant separation of the embryo from this structure in Arabidopsis. The results of this study show that rice genomes contain two...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 135 21 شماره
صفحات -
تاریخ انتشار 2008